GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES CONSTRUCTION OF STRONG RATIONAL DIOPHANTINE TRIPLE WITH PROPERTY D (K2) USING THE SOLUTIONS OF SPECIAL THREE DIMENSIONAL SURFACES S.VIDHYALAKSHMI^{*1}, A.KAVITHA² AND M.A.GOPALAN³

*1,2,3Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, India

ABSTRACT

we search for three distinct polynomials with integer co-efficients such that the sum of any two added with either an arbitrary integer or a polynomial with integer co-efficients is a perfect square of a polynomial with integer co-efficients

Keywords: Polynomial Triples, system of equations

2010 Mathematics subject classification 11D99

I. INTRODUCTION

The problem of constructing the set with property that the product of any two of its distinct elements is one less than a square has a very long history and such sets were studied by Diophantus[1]. A set of m non-zero distinct positive integers $\{a_1, a_2, \dots, a_m\}$ is called Diophantine if $a_i a_j + 1 = \cdot$, a perfect square and such a set is said to be a Diophantine m-tuples with property D(1). Diophantus found the first Diophantine quadruple of rational numbers $\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\}$ [1] while the first set of four positive integers with the above property was found by Fermat and it was $\{1,3,8,120\}$. Euler gave the solution $\{a,b,a+b+2r,4r(r+a)(r+b)\}$ where $a = b + 1 = r^2$ [2]. Many mathematicians considered the problem of the existence of Diophantine quadruples with the property D(n) for any arbitrary integer n [3-9] and also for any non-zero polynomials in n with integer coefficients [10-16] Many generalizations of this problem were considered since antiquity for example, by adding a fixed integer n instead of 1, looking at k^{th} powers instead of squares or considering the problems over domains other than Z or Q. For an extensive review of various articles on Diophantine m-tuples, one may refer the website http:// web.math.pmf.unizg.hr/~duje/ref.html. These results motivated us for determining polynomial triples with integer coefficients is a perfect square of a polynomial with integer coefficients

II. SECTION:1 DIOPHANTINE TRIPLE USING PYTHAGOREAN SOLUTION Let $a = \frac{-kx}{z}$ and $a = \frac{kx}{z}$ be two rational numbers where x and z represent a leg and hypotenuse of the Pythagorean triangle T(x, y, z)

Now $ab + k^2 = (\frac{ky}{z})^2 = r_1^2$ (say)

Therefore the pair (a, b) is a rational Diophantine two-tuple with property $D(k^2)$

Let c be any non-zero rational number such that

$$ac + D(k^2) = \alpha^2$$

(C)Global Journal Of Engineering Science And

$$bc + D(k^2) = \beta^2$$

from which we get

$$c = \frac{2ky}{z}$$

Thus, the triple (a, b, c) is a rational Diophantine three- tuple with property $D(k^2)$ Since

$$ac + k^2 = \left(\frac{k(x-y)}{z}\right)^2$$

note that the above triple (a,b,c) is a strong rational Diophantine triple as the product of any two members of the triple added with k^2 is a perfect square.

Now, consider the pair (b,c) which is a rational Diophantine two tuple with property $D(k^2)$. Applying Euler's formula, it is seen that the triple (b,c,d) is a strong rational Diophantine three tuple with property $D(k^2)$, where $d = \frac{k(3x+4y)}{z}$. The repetition of the above process leads to the generation of sequence of strong rational Diophantine triples with property $D(k^2)$

A few numerical examples are presented in the table:

X	У	z	k	(a,b,c)	(b,c,d)	(c, d, e)	(<i>d</i> , <i>e</i> , <i>f</i>)
4	3	5	1	$(\frac{-4}{5}, \frac{4}{5}, \frac{6}{5})$	$\left(\frac{4}{5},\frac{6}{5},\frac{24}{5}\right)$	$\left(\frac{6}{5},\frac{24}{5},\frac{56}{5}\right)$	$\left(\frac{24}{5},\frac{56}{5},\frac{154}{5}\right)$
3	4	5	2	$(\frac{6}{5}, \frac{6}{5}, \frac{16}{5})$	$\left(\frac{6}{5},\frac{16}{5},10\right)$	$\left(\frac{16}{5}, 10, \frac{126}{5}\right)$	$\left(10, \frac{126}{5}, \frac{336}{5}\right)$
12	5	13	2	$(\frac{-24}{13}, \frac{24}{13}, \frac{20}{13})$	$\left(\frac{24}{13}, \frac{20}{13}, \frac{112}{13}\right)$	$\left(\frac{20}{13}, \frac{112}{13}, \frac{240}{13}\right)$	$\left(\frac{112}{13}, \frac{240}{13}, \frac{684}{13}\right)$
5	12	13	3	$\left(\frac{-15}{13}, \frac{15}{13}, \frac{72}{13}\right)$	$\left(\frac{15}{13}, \frac{72}{13}, \frac{189}{13}\right)$	$\left(\frac{72}{13}, \frac{189}{13}, \frac{507}{13}\right)$	$\left(\frac{189}{13}, \frac{507}{13}, \frac{1320}{13}\right)$

III. SECTION:2 DIOPHANTINE TRIPLE USING SOLUTIONS OF ELLIPTIC PARABOLOID Let $a = \frac{-2kx^2}{z}$, $b = \frac{2ky^2}{z}$ be two rational numbers where (x, y, z) satisfies the elliptic

paraboloid $x^2 + y^2 = z$

Now,
$$ab + k^2 = \left[\left(\frac{y^2 - x^2}{x^2 + y^2}\right)k\right]^2 = r_1^2$$
 (say)

Therefore, the pair (a, b) is a rational Diophantine two-tuple with property $D(k^2)$

(C)Global Journal Of Engineering Science And

29

Following the analysis similar to section:1, the corresponding strong rational Diophantine triples

 $(a, b, c), (a, c, d), (a, d, e), \dots$ with property $D(k^2)$ are given by

$$\left(\frac{-2kx^2}{z}, \frac{2ky^2}{z}, \frac{4k(y^2 - x^2)}{z}\right), \left(\frac{-2kx^2}{z}, \frac{4k(y^2 - x^2)}{z}, \frac{6k(y^2 - 2x^2)}{z}\right), \left(\frac{-2kx^2}{z}, \frac{6k(y^2 - 2x^2)}{z}, \frac{8k(y^2 - 3x^2)}{z}\right).$$

A few numerical examples are presented below:

X	У	Z	k	(a,b,c)	(a,c,d)	(a,d,e)	(a, e, f)
2	3	1 3	1	$\left(\overline{13},\overline{13},\overline{13}\right)$		$\left(\frac{-8}{13}, \frac{6}{13}, \frac{-24}{13}\right)$	
3	5	3 4	2	$\left(\frac{-36}{34}, \frac{100}{34}, \frac{128}{34}\right)$	$\left(\frac{-36}{34}, \frac{128}{34}, \frac{84}{34}\right)$	$\left(\frac{-36}{34}, \frac{84}{34}, \frac{-32}{34}\right)$	$\left(\frac{-36}{34}, \frac{-32}{34}, \frac{-220}{34}\right)$
4	6	5 2	1	$\left(\frac{-32}{52}, \frac{72}{52}, \frac{80}{52}\right)$			
1	4	1 7	2	$\left(\frac{-4}{17}, \frac{64}{17}, \frac{120}{17}\right)$	$\left(\frac{-4}{17}, \frac{120}{17}, \frac{168}{17}\right)$	$\left(\frac{-4}{17}, \frac{168}{17}, \frac{208}{17}\right)$	$\left(\frac{-4}{17}, \frac{208}{17}, \frac{240}{17}\right)$

NOTE: It is worth to note that the above sequence of triples may be represented in general form as the triple $\left(\frac{-2kx^2}{z}, \frac{4\alpha k(y^2 - (\alpha - 1)x^2)}{z}, \frac{(2\alpha + 2)k(y^2 - \alpha x^2)}{z}\right)$ where $\alpha = 1, 2, 3 \dots \dots \dots$

30

IV. CONCLUSION

In this paper, polynomial triples with special numbers as members are constructed such that the sum of any two members of the triple added with either an integer or a polynomial is a perfect square of polynomial with integer coefficients. Since numbers are rich in variety, one may search for polynomial triples with higher order number patterns.

REFRENCES

1. I.G.Bashmakova(ed.), Diophantus of Alexandria, Arithmetic's and the book of polynomial numbers, Nauka Moscow, 1974

2. L.E.Dickson, History of the theory of numbers, Vol.2., Chelsea, New York, 1966, 513-520.

3. *Y.Fujita, The unique representation* $d = 4k(k^2 - 1)$ *in* D(4)*-quadruples*

 $\{k - 2, k + 2, 4k, d\}$, Math. Commun. 11(2006), 69-81.

- 4. *Y.Buggeaud, A.Dujella and M.Mignotte, On the family of Diophantine* triples $\{k - 1, K = 1, 16k^3 - 4k\}$, Glasgoe Math.J. 49 (2007), 333-344.
- 5. Bo He, A.Togbe, On the D(-1) triple $\{1, k^2 + 1, k^2 + 2k + 2\}$ and its unique D(1)-extension, J.Number theory 131 (2011), 120-137.
- 6. *Lj. Bacic, A.Filipin, On the family of D(4)-triples* $\{k 2, k + 2, 4k^3 4k\}$, *Bull. Belg. Math. Soc. Simon Stevin 20(2013)* 777-787.
- 7. *M.A.Gopalan, G.Srividhya, some non-extendable P-5 sets, Diophantus J.Math. 1(1), (2012), 19-22.*
- 8. *M.A.Gopalan, G.Srividhya, Diophantine quadruples for Fibonacci and Lucas numbers with property D(4), Diophantus J.Math.1(1), (2012), 15-18.*
- 9. *M.A.Gopalan, G.Srividhya, Two Special Diophantine triples, Diophantus J.Math.1(1), (2012), 23-27.*
- 10. A.Filipin, Y.Fujita, the $D(-k^2)$ -pair $\{k^2, k^2 + 1\}$, with k prime, Glas. Mat. Ser. III 46 (2011), 311-323.
- 11. Y.Fujita, A.Togbe, Uniqueness of the extension of the $D(4k^2)$ triple { $k^2 - 4, k^2, 4k^2 - 4$ }, Notes Number Theory Discrete Math.17(2011), 42-49.
- 12. *Y.Fujita, Extensions of the* $D(\pm k^2)$ *-triples* $\{k^2, k^2 \pm 1, 4k^2 \pm 1\}$ *, Period. Math. Hungar. 59 (2009), 21-33.*
- 13. A.Dujella, generalization of a problem of Diophantus, Acta Arith 65(1993), 15-27.
- 14. A.M.S.Ramasamy, a Remarkable Sequence, Banyan Mathematical Journal (1995), 69-76.
- 15. A.Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math Ber. 328(1996), 25-30.
- 16. A.Dujella and C.Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J.Number Theory 106(2004), 326-344.

